Design of Composite Structures

The area Design of Composite Structures covers the development of optimized lightweight structures of fiber reinforced polymer composites (FRP) for new applications as well as the substitution of existing designs made of other materials.

Finite element program systems (e.g. ABAQUS, ANSYS) with specialized meshing and CAD programs (ANSA, SolidWorks), optimization tools (e.g. TOSCA, Isight) and in-house developed subroutines for modeling and description of strength and failure mechanisms of FRP (strength criteria, degradation, nonlinear material models, unit cell modeling) are applied.

Dr.-Ing.

Nicole Motsch-Eichmann

Manager Design of Composite Structures

Economic Sectors Applications (Examples)
Aerospace Fuselage and tail structures, high lift components
Automotive Body-in-white and under-carriage structures
Engineering Highly accelerated machine parts
Sports & Recreation Bicycle frames
Medical technology X-ray transparent implants, orthoses
Energy Pressure vessels, rotor shafts

Special Expertise

  • Validation of structural design and analysis by experimental testing
  • FEA unit cell modell for prediction of stiffness and strength of 3D-reinforced laminates
  • Consideration of non-linear material behavior
  • Pressure vessel tool (from the winding process up to design)
  • Topology optimization
  • Multi-axial testing (up to 6 test cylinders)
  • Component testing under defined climatic conditions within the climatic chamber
  • Algorithm for fiber angle determination from CT-measurement
  • Expertise concerning load application in thick-walled components
  • Coupling of numerous monitoring options (optical 3D deformation, acoustic emission, in-situ CT, etc.)

Materials and Questions

Typical Materials

  • GFRP
  • CFRP
  • Thermoset, thermoplastic
  • Fiber reinforced injection molding material
  • 3D-printing material

Typical Questions

  • How can loads be transferred from an FRP-structure to a connected metallic component without increasing of stress?
  • Is it possible to reinforce an FRP-component by fibers in thickness direction?
  • What are the possibilities to increase the natural frequency of a component without generating additional weight?

Projects in this field

Publications from the IVW papers in this field of competence

  • Helfrich, B.

    Untersuchungen des Reibwerteinflusses auf die Krafteinleitung in endloskohlenstofffaserverstärkte Polymerwerkstoffe

  • Bücker, M.

    Entwicklung einer Rotorglocke aus dickwandigen glasfaserverstärktem Kunststoff für einen Axialflussmotor mit Schwerpunkt der experimentellen und numerischen Betrachtung der Krafteinleitung

  • Heß, H.

    Experimentelle Charakterisierung und kontinuumsmechanische Simulation des Versagensverhaltens strukturell vernähter Faser-Kunststoff-Verbunde

  • Kaiser, M.

    Zur Anwendung von kohlenstofffaserverstärktem Kunststoff im Hochleistungsrahmenbau von Sportfahrrädern

  • Thielemann, K.

    Adaptive Strukturoptimierung von Faserkunststoffverbunden unter Berücksichtigung bionischer Aspekte

  • Roth, A. M.

    Strukturelles Nähen: Ein Verfahren zur Armierung von Krafteinleitungen für Sandwich-Strukturen aus Faser-Kunststoff-Verbund

  • Roth, Y.C.

    Beitrag zur rechnerischen Abschätzung des Scheiben-Elastizitäts-verhaltens in Dickenrichtung vernähter Faser-Kunststoff-Verbund-Laminate

  • Weiss, J.

    Strukturoptimierung auf Basis von bionischen Prinzipien: Topologieoptimierung zur Verbesserung des Schwingungsverhaltens von Bauteilen

  • Himmel, N.

    Faserkunststoffverbund-Bauweisen

  • Kuhn, M.

    Zur strukturmechanischen Auslegung unidirektional- und gewebeverstärkter Faserkunststoffverbund-Strukturen

  • Krebs, J.

    Design and Testing of a Composite Osteosynthesis Implant

  • Steffens, M.

    Zur Substitution metallischer Fahrzeug-Strukturbauteile durch innovative Faser-Kunststoff-Verbund-Bauweisen