Fatigue & Life Time Prediction

In the comptence field Fatigue & Life Time Prediction research is being carried out for the following subjects: experimental characterization and modeling of the fatigue behavior of fiber reinforced polymers, the identification of input parameters for the fatigue life analysis (fatigue strength, decrease of residual strength, stiffness de-gradation), and the generation of linear and non-linear models; as well as the detection of damage mechanisms of short fiber reinforced thermoplastics and their influence on life time. A further topic is the experimental fatigue life testing under environmental conditions.

Prof. Dr.-Ing.

Joachim Hausmann

Research Director Component Development & Manager Fatigue & Life Time Prediction

Special Expertise: Method development for realistic and efficient material and component testing under consideration of environmental influences (temperature, humidity, media)

Economic Sectors Applications (Examples)
Automotive Chassis structures
Engineering Highly accelerated machine parts
Energy Wind turbine blades, storage systems

Special Expertise

  • Fatigue life simulation
  • Multiple test facilities and measurement methods
    • Component test rig with 6 channel control
    • Cyclic testing in climate chamber and at high and low temperatures
    • Uni- and multi-axial materials characterization
    • High frequency test rig
    • 3D optical strain and deformation measurement
    • Linking to structural FEA
    • Acoustic emission and thermographie measurement equipment

Materials and Questions

Typical Materials

  • GFRP
  • CFRP
  • Continuously and discontinuously fiber reinforced polymers

Typical Questions

  • How to set-up tests for more efficient life time determination?
  • How can cyclic tests of materials and components be performed as close to reality as possible?
  • What is the influence of environmental conditions on the fatigue behavior of fiber reinforced plastics?

Projects in this field

Publications from the IVW papers in this field of competence

  • Romanenko, V.

    Materialcharakterisierung und durchgängie 3D-Prozesssimulation für kohlenstofffaserverstärktes Sheet Molding Compound

  • Finck, D.

    In-plane- und out-of-plane Kriechen von Sheet-Molding-Compounds bei erhöhter Temperatur

  • Bauer, C.

    Charakterisierung und numerische Beschreibung des nichtlinearen Werkstoff- und Lebensdauerverhaltens eines kurzglasfaserverstärkten Polymerwerkstoffes unter Berücksichtigung der im µCT gemessenen lokalen Faserorientierung

  • Ziermaier, M.

    Nichtlineare Versagensanalyse von dünnwandigen Faser-Kunstoff-Verbund-Bauteilen unter besonderer Berücksichtigung von out-of-plane Rovingwelligkeiten

  • Magin, M.

    Schadensfortschrittsentwicklung durch zyklische Belastung und deren numerische Modellierung unter Berücksichtigung nichtlinearer Werkstoffgrenze bei endloskohlenstofffaserverstärkten Polymerwerkstoffen

  • Noll, T. J.

    Beitrag zur Entwicklung punktueller Lasteinleitungen und Verbesserung der Versagensanalyse für Faser-Kunststoff-Verbund-Strukturen unter zyklischer Belastung

  • Förtsch, W.

    Mikrofraktographische Untersuchungen zum Ermüdungsversagen vorge-schädigter preform-CFK-Werkstoffe mit EP-Matrizes

    External Publications "Fatigue & Life Time Prediction"

    Creep-Induced Screw Preload Loss of Carbon-Fiber Sheet Molding Compound at Elevated Temperature

    https://www.mdpi.com/1996-1944/12/21/3598/pdf

    Testing Procedure for Fatigue Characterization of Steel-CFRP Hybrid Laminate Considering Material Dependent Self-Heating

    https://doi.org/10.3390/ma14123394

    Development of an Analytical Model to Predict Stress–Strain Curves of Short Fiber-Reinforced Polymers with Six Independent Parameters

    https://doi.org/10.3390/jcs6050140

    Influence of adhesive fillets on fatigue behaviour of single-strap composite repairs

    https://doi.org/10.1111/str.12454

    Investigation of the fatigue behavior of thermoplastic composites by load increase tests

    https://doi.org/10.1177/0021998320954524

    Determination of Fatigue Damage Initiation in Short Fiber-Reinforced Thermoplastic through Acoustic Emission Analysis

    http://doi.org/10.3390/jcs5080221

    Mean Value-Amplitude Method for the Determination of Anisotropic Mechanical Properties of Short Fiber Reinforced Thermoplastics

    https://doi.org/10.3390/jcs6060179

    Compression Fatigue Testing Setups for Composites—A Review

    https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202000646

    Characterization of metallic bushings in RTM-made composites by in-situ leak detection under mechanical loading

    https://doi.org/10.1016/j.jcomc.2021.100226

    Improved Mean Value-Amplitude Method for Determination of Orientation-Dependent Modulus of Short Fiber-Reinforced Thermoplastics

    https://doi.org/10.1002/adem.202300221

    Experimental Investigation of Instabilities on Different Scales in Compressive Fatigue Testing of Composites

    https://doi.org/10.3390/jcs5040114

    Thermal residual stresses in thermoplastic CFRP-steel laminates: Modification and influence on fatigue life

    https:///dx.doi.org/10.1142/S2424913021430050

     

    Material Characterization Required for Designing Satellites from Fiber-Reinforced Polymers.

    https://doi.org/10.3390/jcs7120515