Process Simulation

The competence field Process Simulation focuses on the processing of fiber reinforced polymer composites, in particular, the simulation and optimization of manufacturing processes used to create fiber reinforced polymer composite parts. It plays a key role in the digitalization of composite processing chains by creating data and supplementing traditional data collected via experimental methods. To cope with the complexities of multiscale simulation and the ever- increasing demand on computing resources, machine-learning methods are applied to increase the speed of simulations while preserving or even improving accuracy.

All major manufacturing processes for thermoplastic and thermoset based polymer composite manufacturing processes are considered, including thermoforming of organo sheets, resin injection processes, joining of thermoplastic composites (induction welding), winding and tape laying of unidirectional fiber reinforced composites as well as the processing of extruded/pultruded and compression molded parts. Three main features form the fundamental basis of the research work carried out in this competence field. The first is material characterization, which aims to find out how the material behavesin both fluid and solid form under the various physical conditions to which it is subjected.. The second is material digitization in form of material model development, which aims to define and describe the characterized material behavior mathematically. The third is simulation model development, which involves the definition and development of the simulation methods to be used (e.g. type of finite element method, type of elements and which physics should be included in the simulation model). Based on the process simulation model, simulative parameter studies can be carried out where the process, material (prepreg or semi-finished product) and geometric (tool and part shape) parameters can be optimized. On the one hand, parameters for effective production are determined, while on the other hand, local material properties present in the component are predicted and digitally documented and can be made available for further studies and analyses along the computer aided engineering (CAE) simulation chain.

In summary, important research objectives are the new and further development of material characterization and machine-learning-assisted finite-element-based simulation methods, including material modelling, for fiber reinforced polymer composite manufacturing processes.

Dr.

Miro Duhovic

Manager Process Simulation

Special Expertise: Finite element-based multiphysics simulation of complex composite manufacturing processes, material and process characterization, composite model development

Special Expertise

  • Finite-element-based multi-physics simulation of highly complex composites manufacturing processes
  • Multiscale simulation and development of entire CAE workflows
  • Machine-learning enhanced process simulation
Economic Sectors Applications (Examples)
Mobility SMC compression molding simulation for automotive body panels and thermoforming simulation of aircraft stringer profiles
Sports & Recreation Draping simulation for helmets
Energy Infusion simulation for rotor blades

Materials and Questions

Typical Materials

  • GFRP, CFRP
  • Thermosets and Thermoplastics
  • Continuous and discontinuous fiber reinforced systems

Typical Questions

  • How can complex multiphysics phenomena, such as induction welding, be simulated?
  • What input data is required and how can it be generated?
  • How to predict the fiber orientation in a component?
  • How can machine learning and model order reduction contribute to process simulation efficiency?

Projects in this field

Publications from the IVW papers in this field of competence

  • Weber, T.

    Herstellprozesssimulation zur Vorhersage der Faltenbildung in der Prepreg-Autoklav-Fertigung

  • Schöpfer, J.

    Spritzgussbauteile aus kurzfaserverstärkten Kunstsoffen: Methoden der Charakterisierung und Modellierung zur nichtlinearen Simulation von statischen und crashrelevanten Lastfällen

  • Louis M.

    Zur Simulation der Prozesskette von Harzinjektionsverfahren

  • Huber, U.

    Zur methodischen Anwendung der Simulation der Harzinjektionsverfahren

    External Publications "Process Simulation"

    An experimental characterization of wrinkling generated during prepreg autoclave manufacturing using caul plate

    https://journals.sagepub.com/doi/10.1177/0021998319846556

    Advanced process simulation of compression molded carbon fiber sheet molding compound (C-SMC) parts in automotive series applications

    https://doi.org/10.1016/j.compositesa.2022.106924

    Transverse liquid composite moulding processes for advanced composites material manufacturing

    https://doi.org/10.1080/14658011.2022.2108983

    Material Characterization and Compression Molding Simulation of CF-SMC Materials in a Press Rheometry Test

    https://www.scientific.net/KEM.809.467

     

    Polarization imaging for surface fiber orientation measurements of carbon
    fiber sheet molding compounds

    https://doi.org/10.1016/j.coco.2022.101456

    A combined experimental–numerical approach for permeability characterization of engineering textiles

    https://onlinelibrary.wiley.com/doi/10.1002/pc.26064

     

     

    Machine learning for polymer composites process simulation – a review

    https://doi.org/10.1016/j.compositesb.2022.110208

    Influence of polymer matrix on the induction heating behavior of CFRPC laminates

    https://www.sciencedirect.com/science/article/pii/S1359836821009276?via%253D

     

     

    Computational modelling and analysis of transverse liquid composite moulding processes

    https://doi.org/10.1016/j.compositesa.2023.107433