Mechanical Characterization & Modeling

Modeling, Simulation and Testing

This field of competence covers the experimental and simulative analysis of materials, structures, and joints, especially influenced by strain rate and temperature. Key aspects are the evaluation of material properties (parameters, stress-strain-curves,…) and the transfer of this behavior to validated material models for FE simulation. Within these activities, testing procedures are newly developed or optimized. The improvement of energy absorption and structural integrity in tension and bending loaded composite structures and joints is an additional focus in this competence field.

Dr.-Ing.

Sebastian Schmeer

Deputy Research Manager Component Development & Manager Mechanical Characterization & Modeling

Special Expertise: Mechanical characterization of materials, components and joints (strain rate & temperature variable), DIN/ISO standardization, material behavior under multi-axiality (tension/compression and torsion), FEM simulation (mechanical), material model parameterization, validation of FE simulation models by experimental investigations, structural integrity, metal-fiber reinforced composites

Special Expertise

  • Modern testing equipment and technologies:
    • 2 high speed tension machines: material characterization up to 160 kN testing force at velocities of 0.1 mm/s to 20 m/s and temperatures from –100°C to 250°C
    • Crash rig up to 22 kJ impact energy for testing of substructures
    • Drop tower for impact tests up to 3 kJ impact energy
    • Local optical deformation measurement (DIC) for evaluating of material properties and valdiating of simuations
    • 3D-ultra-high-speed pictures up to 1 Million Hz frames per second
    • 3D-ultra-high-resolution pictures up to 40 MPix
  • Mechanical characterization of materials using modern high-performance measurement technology
  • Validation of FE models for materials
  • FE modeling with ABAQUS and LS-Dyna

Materials and Questions

Typical Materials

  • GFRP
  • CFRP
  • AFRP
  • Hybrid materials
  • Continuous and discontinuous fiber reinforcement

Typical Questions

  • Will you support us in creating FE-parameter sets for FE-simulations or with validating simulation results?
  • Are you able to test materials and structures also under the influence of temperature and varying test velocities?
  • How can structures made of FRP absorb energy effectively and show a good structural integrity even under tension?
Economic Sectors Applications (Examples)
Automotive Bumper beams, crash absorber, interior parts
Aeronautics & Space Joints, beams, struts
Engineering Highly accelerated machine parts, housings

Projects in this field

Publications from the IVW papers in this field of competence

  • Rehra, J.

    Beitrag zur Beschreibung des mechanischen Materialverhaltens von Metall-Faser-Hybrid-Verbund-Werkstoffen am Beispiel von stahl- und kohlenstofffaserverstärktem Epoxidharz

  • Donhauser, T.

    Beitrag zur Auslegung hochbeanspruchter Bauteile aus Faser-Thermoplast-Verbunden

  • Hannemann, B.

    Multifunctional metal-carbon-fibre composites for damage tolerant and electrically conductive lightweight structures

  • Bergmann, T.

    Beitrag zur Charakterisierung und Auslegung zugbelasteter Energieabsorberkonzepte mittels experimenteller, ananlytischer und numerischer Methoden

  • Scheliga, D.

    Experimentelle Untersuchung des Rissausbereitungsverhaltens von nanopartikelverstärktem Polyamid 66

  • Voll, N.

    Experimentelle Untersuchung, Simulation und Materialmodellierung von edelstahltextilverstärkten Langfaserthermoplasten

  • Schmeer, S.

    Experimentelle und simulative Analysen von induktionsgeschweißten Hybridverbindungen

  • Meichsner, A.

    Herstellung, Charakterisierung, Modellierungsansätze und Simulation von edelstahltextilverstärktem Polypropylen (ETV-PP) und Langglasfaser-thermoplasten mit PP-Matrix (ETV-PP/GF)

  • Bosseler, M.

    Beschreibung des orthotrop viskoelasto-plastischen Verhaltens langglasfaserverstärkten Polypropylens. Versuchskonzept und FE-Simulation

  • Heimbs, S.

    Sandwichstrukturen mit Wabenkern: Experimentelle und numerische Analyse des Schädigungsverhaltens unter statischer und kurzzeitdynamischer Belastung

  • Imbsweiler, D.

    Experimentelle Untersuchung und numerische Simulation des Crashverhaltens von SMC-Strukturen

  • Dehn, A.

    Experimentelle Untersuchung und numerische Simulation des Crashverhaltens gewebeverstärkter Thermoplaste unter Temperatureinfluss

  • Huisman, M.

    Experimental and numerical investigations for the prediction of the crashworth-iness of layered quasi-isotropic thermoplastic composites (TPC's)

  • Schluppkotten, J.

    Ein Beitrag zur methodischen Integration von neuen Werkstoffen in die Fahrzeugcrashberechnung

    External Publications "Mechanical Characterization & Modeling"

    Use of recycled carbon staple fibers in an advanced thermoforming process and analysis of its crash performance

    Advanced Manufacturing: Polymer & Composites Science (2020), DOI: https://doi.org/10.1080/20550340.2020.1739402

     

    Calculation of highly stressed components made of carbonfiber-reinforced polyamide-6

    https://doi.org/10.1016/j.compstruct.2021.114830

    Experimental characterization and phenomenological modeling of nonlinear viscoelasticity, plasticity and damage of continuous carbon fiber-reinforced thermoplastics

    https://doi.org/10.1016/j.compositesb.2023.110734

    Influence of anodization of aluminum 2024 T3 for application in aluminum/Cf/ epoxy laminate

    https://doi.org/10.1016/j.compositesb.2019.107718

    Characterization and modeling of continuous carbon fiber-reinforced polycarbonate under multiaxial loads

    https://doi.org/10.1016/j.compositesb.2022.109740

    Relation Between Interface Geometry and Tensile Shear Strength of Ultrasonically Welded Joints

    https://doi.org/10.1007/s11665-023-08325-2

    Structural Optimization of Locally Continuous Fiber-Reinforcements for Short Fiber-Reinforced Plastics

    https://www.mdpi.com/2504-477X/5/5/118/htm

    Metal/Carbon-Fiber Hybrid Composites—Damage Evolution and Monitoring of Isothermal Fatigue at Low and Elevated Temperatures

    https://www.mdpi.com/2504-477X/6/3/67

    Development of multi-material hybrid yarns consisting of steel, glass and polypropylene filaments for fiber hybrid composites

    https://doi.org/10.1177/00405175231179759

    Enhanced Low-Velocity Impact Properties for Resin Film Infusion-Manufactured Composites by Flow-Control Approach

    https://www.mdpi.com/2073-4360/13/19/3431

    Describing the Material Behavior of Steel and Carbon Fiber Reinforced Composites Using a Combined Damage-Plasticity Approach

    https://doi.org/10.3390/jcs6080235

    Damage and failure mechanisms of hybrid carbon fiber and steel fiber reinforced polymer composites

    https://doi.org/10.1016/j.compositesa.2024.108366