Digitalized Process & Material Development

Digitalization forms the basis for enhanced and efficient product development. In this competence field, the focus is on the corresponding hardware and software based digitalization "tools" themselves, which are researched from their basics to application.

One core area is process data acquisition. Following the principle of "the right sensor at the right place", holistic concepts for data acquisition are developed and realized, combining virtual studies with process simulation models making it possible to minimize data acquisition effort while at the same time maximizing information value. In addition to the basic topic of Ontology, this research area also includes the use of machine-learning methods such as deep-learning for effective analysis and utilization of both experimental and simulative data. Another focus is on micro-scale material simulation for more accurate prediction of material behavior during processing and application. Together with the other CFs in the department, integrated multiscale approaches realize continuous simulation chains from the fiber to the component level. To build up the necessary material understanding, validate models and generate input data, innovative experimental methods for characterizing the processing behavior of semi-finished products are also developed.

These technologies are developed for the entire spectrum of composite process chains and materials. A special focus, however, is on liquid composite molding (LCM) processes. The scientific foundation is provided by basic research regarding the effects of structural material variations and varying process conditions on the processing behavior of the materials during preforming (e.g. draping behavior) and impregnation (e.g. permeability). Experimental studies using self-developed measurement systems and acquired process data are synergistically combined with self-developed simulation methods to achieve a deeper process and material understanding. On this basis, new and further development of LCM preform technologies including customized reinforcement prepreg material, tooling and equipment design can be carried out.

In summary, important research objectivesare the development and implementation of hardware (sensor systems, machine vision) and software (ontology, machine-learning based material and process analysis and micro-scale material simulation) based digitalization tools for composites product development.

 

PD Dr.-Ing. habil.

David May

Research Director Digitalization & Manager Digitalized Process & Material Development

Special expertise: Process monitoring, experimental-simulative characterization of processing behavior (esp. permeability), Resin injection/infusion, Preforming

Special Expertise

  • Patented measuring systems for in-plane and through-thickness permeability
  • GeoDict© software for material simulation
  • Manufacturing concept development including data acquisition strategies
  • LCM-"one-stop-shop": tooling design, material selection, manufacturing, testing
  • RTM technology tooling with extensive sensor equipment
  • RTM injection systems for thermosets and reactive thermoplastics (e.g. ε-caprolactam)
Economic Sectors Applications (Examples)
Mobility Data acquisition and end-to-end RTM simulation chains
Sports & Recreation Solid resin systems for yacht building
Energy Infusion technologies for rotor blades

Materials and Questions

Typical Materials

  • Liquid and solid resin systems, acrylic resin, reactive PA6
  • Glass/carbon fiber-based rovings and textiles, new and recycled
  • Thermoset and thermoplastic binder materials

Typical Questions

  • Which sensor types and positions provide the most meaningful process data?
  • How can machine-learning methods be used to analyze the data?
  • How can manufacturing processes be simulated from fiber to component level?
  • Which liquid impregnation process is suitable for my application?

Projects in this field

Publications from the IVW papers in this field of competence

  • Willenbacher, B.

    Bestimmungsmethoden für das transversale Imprägnier- und Deformationsverhalten textiler Verstärkungssturkturen

  • May, D.

    Prozessentwicklung für Faser-Kunststoff-Verbunde: Studien zu Verarbeitungseigenschaften von Halbzeugen als Basis einer ganzheitlichen Forschungsmethodik

  • Rimmel, O.

    Grundlagen der Imprägnierung von Dry Fiber Placement Preforms

  • Kühn, F.

    Sequenzielle Imprägnierung thermoplastischer Puler-Towpregs

  • Neumann, U.

    Kontinuierliches Ultraschall-Preformen zur Fertigung von CFK-Bauteilen in der Luftfahrt

  • Grieser, T.

    Textiles Formgebungsverhalten beim kontinuierlichen Preforming

  • May geb. Becker, D.

    Transversales Imprägnierverhalten textiler Verstärkungsstrukturen für Faserkunststoffverbunde

  • Arnold, M.

    Einfluss verschiedener Angussszenarien auf den Harzinjektionsprozess und dessen simulative Abbildung

  • Weiland, F.

    Ultraschall-Preformmontage zur Herstellung von CFK-Luftfahrtstrukturen

  • Rieber, G.

    Einfluss von textilen Parametern auf die Permeabilität von Multifilamentgeweben für Faserverbundkunststoffe

  • Molnàr, P.

    Stitching Technique Supported Preform Technology for Manufacturing Fiber Reinforced Polymer Composites

  • Ogale, A.

    Investigations of sewn preform characteristics and quality aspects fort he manufacturing of fiber reinforced polymer composites

  • Stadtfeld, H.

    Entwicklung einer Messzelle zur Bestimmung von Kompaktierungs- und Permeabilitätskennwerten bei flächigen Faserhalbzeugen

  • Mitschang, P. (Hrsg.)

    Prozessentwicklung und ganzheitliches Leichtbaukonzept zur durchgängigen, abfallfreien Preform-RTM Fertigung. BMBF Projekt - leider vergriffen!

  • Stöven, T.

    Beiträge zur Ermittlung der Permeabilität von flächigen Faserhalbzeugen

  • Weimer, C.

    Zur nähtechnischen Konfektion von textilen Verstärkungsstrukturen für Faser-Kunststoff-Verbunde

  • Kissinger, C.

    Ganzheitliche Betrachtung der Harzinjektionstechnik - Messsystem zur durchgängigen Fertigungskontrolle

  • Reuter, W.

    Hochleistungs-Faser-Kunststoff-Verbunde mit Class-A-Oberflächenqualität für den Einsatz in der Fahrzeugaußenhaut - leider vergriffen!

    External Publications „Digitalized Process & Material Development“

    Modeling transverse mirco flow in dry fiber placement preforms

    Journal of Composite Materials 04/2019

    https://doi.org/10.1177/0021998319884612

    Impact of Stitchin on Permeability and Mechanical Properties of Preforms Manufactured by Dry Fiber Placement, Polymer Composites 5/2018
    doi.org

    Out–of–plane capillary pressure of technical textiles

    Composites Part A: Applied Science and Manufacturing 09/2019

    https://doi.org/10.1016/j.compositesa.2019.105495

    Wet Fiber Placement: A novel manufacturing technology for continuous fiber reinforced polymer composites

    Journal of Composite Materials 06/2018

    https://doi.org/10.1177/0021998318786998

    Integrated Product Development with Fiber-Reinforced Polymers

    Integrated Product Development with Fiber-Reinforced Polymers | David May | Springer

    Evaluation of different bonding strategies for glass fibre-reinforced epoxy resin with embedded elastomer layers

    https://doi.org/10.1080/14658011.2022.2111512

    Out-of-plane permeability of 3D woven fabrics for composite structures

    The Journal of The Textile Institute 08/2019

    https://doi.org/10.1080/00405000.2019.1682759

    Recycling langer Kohlenstofffasern, Kunststoffe 5/2018
    www.kunststoffe.de

    In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise

    Composites Part A: Applied Science and Manufacturing 06/2019

    https://doi.org/10.1016/j.compositesa.2019.03.006

    A combined experimental–numerical approach for permeability characterization of engineering textiles

    https://doi.org/10.1002/pc.26064

    An overview on current manufacturing technologies: Processing continuous rovings impregnated with thermoset resin

    https://onlinelibrary.wiley.com/doi/full/10.1002/pc.26274

    Solid epoxy prepregs with patterned resin distribution: Influence of pattern and process parameters on part quality in vacuum-bag-only processing

    https://doi.org/10.1002/pc.27696

    Textile-Integrated Elastomer Surface for Fiber Reinforced Composites

    22nd Symposium on Composites 06/2019

    https://doi.org/10.4028/www.scientific.net/KEM.809.53

    Development & Validation of Recycled Carbon Fiber-Based Binder Tapes for Automated Tape Laying Processes, Journal of Composite Materials 11/2018
    doi.org

    Metrological determination of inhomogeneous hydrodynamic compaction during unsaturated out-of-plane permeability measurement of technical textiles

    Advanced Manufacturing: Polymer & Composites Science 04/2019

    https://doi.org/10.1080/20550340.2019.1598049

    Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise

    https://www.sciencedirect.com/science/article/abs/pii/S1359835X21002025

    Saturated out-of-plane permeability and deformation metrology of textiles at high levels of injection pressure

    https://www.tandfonline.com/doi/full/10.1080/20550340.2022.2064070

    Numerically predicted permeability of over 6500 artificially generated fibrous microstructures

    https://doi.org/10.5281/zenodo.10047095

    A Novel Simulative-Experimental Approach to Determine the Permeability of Technical Textiles

    22nd Symposium on Composites 06/2019

    https://doi.org/10.4028/www.scientific.net/KEM.809.487

    Präzise Charakterisierung von Verstärkungstextilien
    PDF

    Dry fiber placement of carbon/steel fiber hybrid preforms for multifunctional composites

    Advanced Manufacturing: Polymer & Composites Science 03/2019

    https://doi.org/10.1080/20550340.2019.1585027

    Concept for Darcy-based viscosity measurement for fast-curing resin systems

    https://doi.org/10.1016/j.coco.2021.100881

    Structural topology optimization and path planning for composites manufactured by fiber placement technologies

    https://doi.org/10.1016/j.compstruct.2022.115488