Crash & Energy Absorption

Modeling, Simulation and Testing

This field of competence covers the experimental and simulative analysis of materials, structures and joints, especially influenced by strain rate and temperature. Key aspects are the validation of FE-models on material and structure level as well as the improvement of energy absorption in tension and bending loaded composite structures and joints.


Sebastian Schmeer

Deputy Research Director Component Development & Manager Crash & Energy Absorption

Special expertise:
Mechanical characterisation of materials, components and joints (strain rate & temperature varying), DIN/ISO standardisation, material behaviour under multi-axiality (tension/compression and torsion), FEM simulation (mechanical), material model parameterisation, validation of FE simulation models by experimental investigations, structural integrity, metal-fibre composites
Economic Sectors Applications (Examples)
Automotive Bumper beam, crash absorber, interior parts
Aeronautics Joints, beams, struts
Engineering Highly accelerated machine parts, housings

Special Expertise

  • Modern testing equipment and technologies:
    • High speed tension machine: material characterization at velocities of 0.1 mm/s to 20 m/s and temperatures from –100°C to 250°C
    • Crash rig up to 22 kJ impact energy for testing of substructures
    • Drop tower for impact tests up to 3 kJ impact energy
    • Local optical deformation measurement to validate simulations
  • Validation of FE-models for composites
  • FE-modeling by ABAQUS and LS-Dyna
  • Ultra-highspeed-pictures up to 1 million Hz frames per second

Materials and Questions

Typical Materials

  • GFRP
  • CFRP
  • AFRP
  • Hybrid materials
  • Continuous and discontinuous fiber reinforcement

Typical Questions

  • Will you support us in creating FE-parameter sets for FE-simulations or with validating simulation results?
  • Are you able to test materials and structures also under the influence of temperature and varying test velocities?
  • How can structures made of FRP absorb energy effectively and show a good structural integrity even under tension?

Projects in this field

Publications from the IVW papers in this field of competence

  • Hannemann, B.

    Multifunctional metal-carbon-fibre composites for damage tolerant and electrically conductive lightweight structures

  • Bergmann, T.

    Beitrag zur Charakterisierung und Auslegung zugbelasteter Energieabsorberkonzepte mittels experimenteller, ananlytischer und numerischer Methoden

  • Scheliga, D.

    Experimentelle Untersuchung des Rissausbereitungsverhaltens von nanopartikelverstärktem Polyamid 66

  • Voll, N.

    Experimentelle Untersuchung, Simulation und Materialmodellierung von edelstahltextilverstärkten Langfaserthermoplasten

  • Schmeer, S.

    Experimentelle und simulative Analysen von induktionsgeschweißten Hybridverbindungen

  • Meichsner, A.

    Herstellung, Charakterisierung, Modellierungsansätze und Simulation von edelstahltextilverstärktem Polypropylen (ETV-PP) und Langglasfaser-thermoplasten mit PP-Matrix (ETV-PP/GF)

  • Bosseler, M.

    Beschreibung des orthotrop viskoelasto-plastischen Verhaltens langglasfaserverstärkten Polypropylens. Versuchskonzept und FE-Simulation

  • Heimbs, S.

    Sandwichstrukturen mit Wabenkern: Experimentelle und numerische Analyse des Schädigungsverhaltens unter statischer und kurzzeitdynamischer Belastung

  • Imbsweiler, D.

    Experimentelle Untersuchung und numerische Simulation des Crashverhaltens von SMC-Strukturen

  • Dehn, A.

    Experimentelle Untersuchung und numerische Simulation des Crashverhaltens gewebeverstärkter Thermoplaste unter Temperatureinfluss

  • Huisman, M.

    Experimental and numerical investigations for the prediction of the crashworth-iness of layered quasi-isotropic thermoplastic composites (TPC's)

  • Schluppkotten, J.

    Ein Beitrag zur methodischen Integration von neuen Werkstoffen in die Fahrzeugcrashberechnung